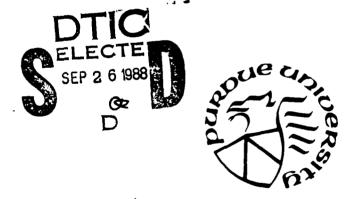
MIL FILE LUDA

01

AD-A199 446


ADAPTIVE TESTS \*

by

K. S. Mak Purdue University

Technical Report #88-38

# **PURDUE UNIVERSITY**



# DEPARTMENT OF STATISTICS

Distribution States in a Distribution of the Distribution of States of the Distribution of the Distributio

88 9 26 002



ADAPTIVE TESTS \*

by

K. S. Mak Purdue University

Technical Report #88-38



Department of Statistics Purdue University

August 1988

DISTRIBUTION STATEMENT A
Approved for public releases
Distriction Unlimited

<sup>\*</sup> This research was supported in part by the Office of Naval Research Contract N00014-88-K-0170 and NSF Grants DMS-8606964, DMS-8702620A1 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

-A-

Adaptive Tests
by
K. S. Mak <sup>1</sup>
Purdue University

#### Abstract

The problem of hypothesis testing when the distribution is specified only up to a nuisance parameter is considered. A test is said to be adaptive if it is asymptotically optimal regardless of the value of the nuisance parameter. The exponential rate of convergence to zero of the probability of type II error when the probability of type I error converges to zero exponentially fast at a fixed rate is used as the optimal criterion. A necessary and sufficient condition for the existence of adaptive test is obtained.

100 9, (K2)

Adod Adod A CONTROL OF STATE OF

A-1

Research supported by a David Ross Fellowship of Purdue University.
This research was also supported in part by the Office of Naval Research
Contract N00014-88-K-0170 and NSF Grants DMS-8606964, DMS-8702620A1 at
Purdue University. Reproduction in whole or in part is permitted for
any purpose of the United States Government.

### 1 Introduction

Let  $\mathbf{x} = (x_1, \dots, x_n)$  be n independent, identically, distributed observations on a random variable X having distribution P or Q. It is desired to test the null hypothesis that X has distribution P versus the alternative that X has distribution Q.

Let  $\phi_n = \phi_n(\mathbf{x})$  be any test function. Let A be a non-negative number. As in Tusnády (1977), a sequence of test functions  $\{\phi_n\}$  is said to have exponential rate A if

$$\limsup_{n\to\infty} E_P \phi_n < 1, \text{ when } A = 0,$$

$$\limsup_{n\to\infty} n^{-1} \log E_P \phi_n \le -A, \text{ when } A > 0.$$
(1.1)

Let  $\Phi_A(P)$  be the set of all sequences of tests that have exponential rate A. Let

$$B(A, P, Q) = -\inf \{ \liminf_{n \to \infty} n^{-1} \log E_Q(1 - \phi_n) : \{\phi_n\} \in \Phi_A(P) \}.$$
 (1.2)

In other words, B(A, P, Q) is the optimal exponential rate at which the probability of type II error can converge to zero. A sequence of tests  $\{\phi_n\}$  in  $\Phi_A(P)$  is said to be asymptotically optimal if

$$\liminf_{n\to\infty} n^{-1}\log E_Q(1-\phi_n)=-B(A,P,Q).$$

Let the densities of P,Q be denoted by p(x),q(x) respectively. It is assumed that  $E_P(q(x)/p(x))^t < \infty$  for all t. It is known that (see Bahadur (1971)) if  $\lim_{n\to\infty} E_P\phi_n = \alpha, 0 < \alpha < 1$  (so that the sequence of tests  $\{\phi_n\}$  is of exponential rate 0), then B(0,P,Q) = K(P,Q) where  $K(P,Q) = E_P \log(p(x)/q(x))$  is the Kullback-Leibler information number.

When A > 0, it is shown in Blahut (1974), Tusnády (1977), and Birgé (1981) that

$$-B(A, P, Q) = \inf_{t>0} \left\{ tC + \log E_Q \left( \frac{p(x)}{q(x)} \right)^t \right\}$$
 (1.3)

where C is determined by

$$-A = \inf_{t>0} \left\{ -tC + \log E_P \left( \frac{q(x)}{p(x)} \right)^t \right\}. \tag{1.4}$$

Futhermore, if 0 < A < K(Q, P), then B = B(A, P, Q) > 0 and

$$A = B + C. (1.5)$$

A similar notion of asymptotic optimality for composite hypotheses has been investigated in Bahadur (1960), Hoeffding (1965), Brown (1971), Tusnády (1977) and Birgé (1981).

Now assume that the distributions P and Q are not determined exactly, but only up to a finite-valued nuisance parameter  $\tau, \tau = 1, \ldots, l$ . For example, a message, in one of l posssible languages using the same alphabets, is to be transmitted through a noisy channel n times and a choice has to be made between two possible messages or rather the probability distributions associated with the messages, without knowing which language is used. Another example is that there are l measurement types and for each type  $\alpha$ , the measurement has two possible distributions  $P_{\alpha}$  and  $Q_{\alpha}$ . Thus, one has to test  $P_{\alpha}$  versus  $Q_{\alpha}$  with  $\alpha$  unknown.

Let  $A_1, \ldots, A_l$  be fixed positive numbers. A test  $\phi_n^a$  is called an adaptive test if it is an asymptotically optimal test of rate  $A_{\alpha}$  for each value of the nuisance parameter  $\alpha$ . That is,  $\phi_n^a$  is adaptive if for each  $\alpha$ ,

$$\limsup_{n\to\infty} n^{-1} \log E_P^{\alpha} \phi_n^a \leq -A_{\alpha} \text{ and}$$

$$\liminf_{n\to\infty} n^{-1} \log E_O^{\alpha} (1-\phi_n^a) = -B(A_{\alpha}, P_{\alpha}, Q_{\alpha}).$$
(1.6)

The existence of adaptive tests of rate 0 has been investigated in Rukhin (1982,1986). A necessary and sufficient condition for the existence of such a test is that  $K(P_{\alpha}, Q_{\beta}) \geq K(P_{\beta}, Q_{\beta})$  for all  $\alpha, \beta$ . It is shown in section 2 that for adaptive tests to exist, any two distributions  $P_{\alpha}, Q_{\beta}, \alpha \neq \beta$  cannot be more 'difficult' to distinguish than  $P_{\alpha}, Q_{\alpha}$ . Here, 'difficulty' in distinguishing two distributions is measured by the rate of convergence of the type II error. When an adaptive test exists, it is shown that a weighted likelihood ratio test with weights depending on the rates of convergence of the type I and II errors is always adaptive. An overall maximum likelihood ratio test may not be adaptive.

### 2 Condition for the Existence of Adaptive Tests

Let  $p_{\alpha}(x), q_{\alpha}(x)$  be the densities of  $P_{\alpha}, Q_{\alpha}$  respectively. Let  $A_1, \ldots, A_l$  be positive constants and denote  $B(A_{\alpha}, P_{\alpha}, Q_{\beta}), C(A_{\alpha}, P_{\alpha}, Q_{\beta})$  by  $B_{\alpha\beta}, C_{\alpha\beta}$  respectively. Also, let  $\psi(t|P_{\alpha}, Q_{\beta}) = E_P^{\alpha}(q_{\beta}(x)/p_{\alpha}(x))^t$ . Assume that  $\psi(t|P_{\alpha}, Q_{\beta}) < \infty$  for all t, for all  $\alpha, \beta$ . Note that  $\psi(t|P_{\alpha}, Q_{\beta})$  is the moment generating function of  $\log(q_{\beta}(x)/p_{\alpha}(x))$ , thus by the finiteness assumption,  $\psi(t|P_{\alpha}, Q_{\beta})$  is strictly convex

and differentiable, indeed differentiation can be carried out under the expectation sign. Let

$$T_n = T_n(\mathbf{x}) = n^{-1} \log \frac{\max_{\alpha} e^{nB_{\alpha\alpha}} \prod_{j=1}^n q_{\alpha}(x_j)}{\max_{\alpha} e^{nA_{\alpha}} \prod_{j=1}^n p_{\alpha}(x_j)}.$$
 (2.1)

Let  $\phi_n = \phi_n(\mathbf{x})$  be a test with critical region given by  $T_n \geq 0$ , i.e.

$$\phi_n = \begin{cases} 1 & \text{if } T_n \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$
 (2.2)

Theorem 2.1 Assume that  $0 < A_{\alpha} < \min_{\beta} K(Q_{\beta}, P_{\alpha})$ , for all  $\alpha$ . If  $B_{\beta\alpha} \geq B_{\alpha\alpha}$  for all  $\beta, \alpha$ , then  $\phi_n$  is an adaptive test.

Proof. We first show that  $\phi_n$  has exponential rate  $A_{\alpha}$  for every  $\alpha$ . Since,

$$egin{array}{ll} E_P^lpha\phi_n & \leq & P_lpha\left(n^{-1}\lograc{\max_eta\,e^{nB_{etaeta}}\prod_{j=1}^nq_eta(x_j)}{e^{nA_lpha}\prod_{j=1}^np_lpha(x_j)}\geq 0
ight) \ & \leq & \sum_{eta=1}^lP_lpha\left(n^{-1}\lograc{e^{nB_{etaeta}}\prod_{j=1}^nq_eta(x_j)}{e^{nA_lpha}\prod_{j=1}^np_lpha(x_j)}\geq 0
ight) \ & \leq & l\cdot\max_eta P_lpha\left(n^{-1}\sum_{j=1}^n\lograc{q_eta(x_j)}{p_lpha(x_j)}\geq A_lpha-B_{etaeta}
ight), \end{array}$$

and

$$P_{\alpha}\left(n^{-1}\sum_{j=1}^{n}\log\frac{q_{\beta}(x_{j})}{p_{\alpha}(x_{j})}\geq A_{\alpha}-B_{\beta\beta}\right)\leq e^{-nt(A_{\alpha}-B_{\beta\beta})}\left[E_{P}^{\alpha}\left(\frac{q_{\beta}(x)}{p_{\alpha}(x)}\right)^{t}\right]^{n}$$

for any t > 0, it follows that,

$$E_P^{\alpha}\phi_n \leq l \cdot \max_{\beta} \inf_{t>0} e^{-nt(A_{\alpha}-B_{\beta\beta})} (\psi(t|P_{\alpha},Q_{\beta}))^n.$$

Therefore,

$$\limsup_{n\to\infty} n^{-1} \log E_P^{\alpha} \phi_n \leq \max_{\beta} \inf_{t>0} \{-t(A_{\alpha} - B_{\beta\beta}) + \log \psi(t|P_{\alpha}, Q_{\beta})\}$$

$$\leq \max_{\beta} \inf_{t>0} \{-t(A_{\alpha} - B_{\alpha\beta}) + \log \psi(t|P_{\alpha}, Q_{\beta})\}$$

$$= -A_{\alpha}$$

as  $A_{\alpha} - B_{\alpha\beta} = C_{\alpha\beta}$  by (1.5).

Since  $\phi_n$  is a test of exponential rate  $A_{\alpha}$  for each  $\alpha$ , to show that  $\phi_n$  is an adaptive test, it is enough to show that  $\liminf_{n\to\infty} n^{-1} \log E_Q^{\alpha}(1-\phi_n) \leq -B_{\alpha\alpha}$ . Now,

$$E_Q^{\alpha}(1-\phi_n) \leq l \cdot \max_{\beta} Q_{\alpha} \left( n^{-1} \sum_{j=1}^n \log \frac{p_{\beta}(x_j)}{q_{\alpha}(x_j)} > B_{\alpha\alpha} - A_{\beta} \right),$$

and so, by a similar argument, one obtains

$$\liminf_{n\to\infty} n^{-1}\log E_Q^{\alpha}(1-\phi_n) \leq \max_{\beta} \inf_{t>0} \{-t(B_{\alpha\alpha}-A_{\beta}) + \log \psi(t|Q_{\alpha},P_{\beta})\}. \quad (2.3)$$

Since the function  $\log \psi(t|Q_{\alpha}, P_{\beta})$  is strictly convex, there exist  $0 < t_0 < 1$  such that  $-B_{\beta\alpha} = t_0 C_{\beta\alpha} + \log \psi(t_0|Q_{\alpha}, P_{\beta})$ . Therefore,

$$\inf_{t>0} \{-t(B_{\alpha\alpha} - A_{\beta}) + \log \psi(t|Q_{\alpha}, P_{\beta})\}$$

$$\leq -t_0(B_{\alpha\alpha} - A_{\beta}) + \log \psi(t_0|Q_{\alpha}, P_{\beta})$$

$$= -B_{\alpha\alpha} + (1 - t_0)B_{\alpha\alpha} + t_0A_{\beta} - B_{\beta\alpha} - t_0(A_{\beta} - B_{\beta\alpha})$$

$$= -B_{\alpha\alpha} + (1 - t_0)(B_{\alpha\alpha} - B_{\beta\alpha})$$

$$\leq -B_{\alpha\alpha}.$$

Thus, from (2.3),  $\liminf_{n\to\infty} n^{-1} \log E_Q^{\alpha}(1-\phi_n) \leq -B_{\alpha\alpha}$ , for all  $\alpha$  and  $\phi_n$  is an adaptive test.

A necessary condition for the existence of adaptive tests is obtained by considering the asymptotic behaviour of the most powerful test of the simple hypothesis  $\prod_{j=1}^n p_{\alpha}(x_j)$  versus the simple alternative  $w_{\alpha} \prod_{j=1}^n q_{\alpha}(x_j) + w_{\beta} \prod_{j=1}^n q_{\beta}(x_j), \alpha \neq \beta$ , where  $w_k = e^{nb_k}/(e^{nb_{\alpha}} + e^{nb_{\beta}}), k = \alpha, \beta$ , and  $b_{\alpha}, b_{\beta}$  are real numbers.

For the remainder of this section, we assume that  $P_{\alpha}$ ,  $Q_{\alpha}$  are absolutely continuous with respect to the Lebesgue measure for all  $\alpha$ . Let  $\tilde{Q}_n$  denote the distribution with density  $w_{\alpha} \prod_{j=1}^{n} q_{\alpha}(x_j) + w_{\beta} \prod_{j=1}^{n} q_{\beta}(x_j)$ . Let  $\phi_n^{\alpha}$  be the following likelihood ratio test:

$$\phi_n^{\alpha} = \begin{cases} 1 & \text{if } \frac{w_{\alpha} \prod_{j=1}^n q_{\alpha}(z_j) + w_{\beta} \prod_{j=1}^n q_{\beta}(z_j)}{\prod_{j=1}^n p_{\alpha}(z_j)} \ge c_n \\ 0 & \text{otherwise,} \end{cases}$$

where  $c_n$  is a constant.

Lemma 2.1 For a fixed  $\alpha$ , if  $\lim_{n\to\infty} n^{-1} \log E_P^{\alpha} \phi_n^{\alpha} = -A_{\alpha}$ , then

$$\lim_{n\to\infty} n^{-1}\log E_{\bar{Q}_n}(1-\phi_n^{\alpha}) = \max_{k=\alpha,\beta}(b_k+\rho_{\alpha k}(b_{\alpha},b_{\beta},C)) - \bar{b},$$

where  $\rho_{\alpha k}(b_{\alpha}, b_{\beta}, C) = \inf_{s,t>0} \{s(C - b_{\alpha}) + t(C - b_{\beta}) + \log E_Q^k(\frac{p_{\alpha}(z)}{q_{\alpha}(z)})^s(\frac{p_{\alpha}(z)}{q_{\beta}(z)})^t\}$  and  $C = \max_{k=\alpha,\beta} (C_{\alpha k} + b_k), \bar{b} = \max(b_{\alpha}, b_{\beta}).$ 

Proof. We first show that the assumption implies that  $\lim_{n\to\infty} c_n = C - \bar{b}$ . From the definition of  $\phi_n^{\alpha}$ , one obtains

$$\begin{split} &\lim_{n\to\infty} n^{-1} \log E_P^{\alpha} \phi_n^{\alpha} \\ &\leq \liminf_{n\to\infty} n^{-1} \log P_{\alpha} \left( n^{-1} \log 2 \cdot \max_{k=\alpha,\beta} w_k \prod_{j=1}^n \frac{q_k(x_j)}{p_{\alpha}(x_j)} \geq c_n \right) \\ &\leq \max_{k=\alpha,\beta} \liminf_{n\to\infty} n^{-1} \log P_{\alpha} \left( n^{-1} \sum_{j=1}^n \log \frac{q_k(x_j)}{p_{\alpha}(x_j)} \geq c_n - b_k + + n^{-1} \log \frac{w}{2} \right) \\ &\leq \max_{k=\alpha,\beta} \inf_{t>0} \{ -t(\bar{C} - b_k + \bar{b}) + \log \psi(t|P_{\alpha}, Q_k) \} \end{split}$$

where  $w = e^{nb_{\alpha}} + e^{nb_{\beta}}$ ,  $\bar{C} = \limsup_{n \to \infty} c_n$ . Therefore,  $\inf_{t>0} \{-t(\bar{C} - b_k + \bar{b}) + \log \psi(t|P_{\alpha},Q_k)\} \ge \inf_{t>0} \{-tC_{\alpha k} + \log \psi(t|P_{\alpha},Q_k)\}$  for  $k = \alpha$  or  $\beta$ . This implies that  $\bar{C} - b_k + \bar{b} \le C_{\alpha k}$ , for  $k = \alpha$  or  $\beta$ , i.e.

$$\bar{C} \leq \max_{k=\alpha,\beta} (C_{\alpha k} + b_k) - \bar{b}. \tag{2.4}$$

Also,  $E_P^{\alpha} \phi_n^{\alpha} \geq P_{\alpha}(n^{-1} \log w_k \prod_{j=1}^n (q_k(x_j)/p_{\alpha}(x_j)) \geq c_n)$  for  $k = \alpha$  and  $\beta$ . Thus

$$E_P^{\alpha}\phi_n^{\alpha} \geq \max_{k=\alpha,\beta} P_{\alpha}\left(n^{-1}\sum_{j=1}^n \log \frac{q_k(x_j)}{p_{\alpha}(x_j)} \geq c_n - b_k + n^{-1}\log w\right).$$

Using a similar argument as above, one obtains, for  $k = \alpha$  and  $\beta$ ,

$$\inf_{t>0} \{-tC_{\alpha k} + \log \psi(t|P_{\alpha},Q_k)\} \geq \inf_{t>0} \{-t(\underline{C}-b_k+\overline{b}) + \log \psi(t|P_{\alpha},Q_k)\},$$

where  $\underline{C} = \liminf_{n \to \infty} c_n$ . Hence,  $C_{\alpha k} \leq \underline{C} - b_k + \overline{b}$  for each k, i.e

$$\underline{C} \ge \max_{k=\alpha,\beta} (C_{\alpha k} + b_k) - \bar{b}. \tag{2.5}$$

Equations (2.4) and (2.5) imply that  $\lim_{n\to\infty} c_n = C - \bar{b}$ . Now,

$$E_{Q}^{k}(1-\phi_{n}^{\alpha}) \leq Q_{k}\left(n^{-1}\log\max_{k=\alpha,\beta}w_{k}\prod_{j=1}^{n}\frac{q_{k}(x_{j})}{p_{\alpha}(x_{j})} < c_{n}\right)$$

$$= Q_{k}\left(n^{-1}\sum_{j=1}^{n}\log\frac{q_{k}(x_{j})}{p_{\alpha}(x_{j})} < c_{n} - b_{k} + n^{-1}\log w, k = \alpha, \beta\right)$$
(2.6)

Similarly,

$$E_Q^k(1-\phi_n^{\alpha}) \geq Q_k \left(n^{-1} \sum_{j=1}^n \log \frac{q_k(x_j)}{p_{\alpha}(x_j)} < c_n - b_k + n^{-1} \log \frac{w}{2}, k = \alpha, \beta\right). \quad (2.7)$$

Applying Theorem 5.1 of Groeneboom et al. (1979), (2.6) and (2.7) imply that

$$\lim_{n\to\infty} n^{-1}\log E_Q^k(1-\phi_n^\alpha) = \rho_{\alpha k}(b_\alpha,b_\beta,C)$$

for  $k=\alpha,\beta$ . Since  $E_{\tilde{Q}_n}(1-\phi_n^{\alpha})=w_{\alpha}E_Q^{\alpha}(1-\phi_n^{\alpha})+w_{\beta}E_Q^{\beta}(1-\phi_n^{\alpha})$ , we have

$$\lim_{n\to\infty} n^{-1}\log E_{\tilde{Q}_n}(1-\phi_n^\alpha) = \max_{k=\alpha,\beta} \lim_{n\to\infty} n^{-1}\log w_k E_Q^k(1-\phi_n^\alpha)$$

and the result follows.

Since  $\phi_n^{\alpha}$  is the most powerful test of  $\prod_{j=1}^n p_{\alpha}(x_j)$  versus  $w_{\alpha} \prod_{j=1}^n q_{\alpha}(x_j) + w_{\beta} \prod_{j=1}^n q_{\beta}(x_j)$ , this yields the following

Corollary 2.1 For any test  $\phi_n^*$  such that  $\limsup_{n\to\infty} n^{-1} \log E_P^{\alpha} \phi_n^* \leq -A_{\alpha}$ , for a fixed  $\alpha$ 

$$\max_{k=\alpha,\beta}(b_k + \liminf_{n\to\infty} n^{-1}\log E_Q^k(1-\phi_n^*)) \geq \max_{k=\alpha,\beta}(b_k + \rho_{\alpha k}(b_\alpha,b_\beta,C))$$

for any  $\beta = 1, \ldots, l$  and any  $b_1, \ldots, b_l$ .

Corollary 2.2  $\rho_{\alpha k}(b_{\alpha}, b_{\beta}, C) \geq -B(A_{\alpha}, P_{\alpha}, Q_{k}), k = \alpha, \beta.$ 

Proof. As shown in the proof of lemma 2.1,  $\lim_{n\to\infty} n^{-1} \log E_P^{\alpha} \phi_n^{\alpha} = -A_{\alpha}$  implies that  $\lim_{n\to\infty} n^{-1} \log E_Q^k (1-\phi_n^{\alpha}) = \rho_{\alpha k}(b_{\alpha},b_{\beta},C)$  for  $k=\alpha,\beta$ . Since, as a test of  $P_{\alpha}$  versus  $Q_k,\phi_n^{\alpha}$  has exponential rate  $A_{\alpha}$ , the result follows from (1.2).

Theorem 2.2 If an adaptive test exists, then for all  $\alpha, \beta$ 

$$B_{\alpha\alpha} \leq B_{\beta\alpha}$$
.

Proof. Let  $\phi_n^a$  be an adaptive test. Since  $\phi_n^a$  satisfies the condition in corollary 2.1, by letting  $b_{\alpha} = B_{\alpha\alpha}$  and  $b_{\beta} = B_{\beta\beta}$ , one obtains

$$0 = \max_{k=\alpha,\beta} (B_{kk} - B_{kk}) \ge \max_{k=\alpha,\beta} (B_{kk} + \rho_{\alpha k}(B_{\alpha \alpha}, B_{\beta \beta}, C)),$$

i.e.  $\rho_{\alpha k}(B_{\alpha \alpha}, B_{\beta \beta}, C) \leq -B_{kk}$  for  $k = \alpha, \beta$ . But, from corollary 2.2, with  $k = \beta, \rho_{\alpha \beta}(B_{\alpha \alpha}, B_{\beta \beta}, C) \geq -B_{\alpha \beta}$ , so that  $B_{\beta \beta} \leq B_{\alpha \beta}$ . Since  $\alpha, \beta$  are arbitrary, the result follows.

Hence from Theorems 2.1 and 2.2 we have established

Corollary 2.3 If  $P_{\alpha}$ ,  $Q_{\alpha}$  are absolutely continuous with respect to the Lebesgue measure for all  $\alpha$ , then an adaptive test exists iff for all  $\alpha$ ,  $\beta$ ,

$$B_{\alpha\alpha} \le B_{\beta\alpha}. \tag{2.8}$$

From the proof of theorem 2, we see that if an adaptive test exists, then  $\rho_{\alpha\beta}(B_{\alpha\alpha},B_{\beta\beta},C) \leq -B_{\beta\beta}$  for all  $\alpha,\beta$ . Suppose that  $P_{\alpha}=Q_{\beta}$  for some  $\alpha \neq \beta$ . Assume that  $A_{\beta}$  satisfies the condition in theorem 2.1, in particular  $A_{\beta} < K(Q_{\beta},P_{\beta})$ , i.e.  $B_{\beta\beta} > 0$ . Consider

$$\rho_{\alpha\beta}(B_{\alpha\alpha}, B_{\beta\beta}, C)$$

$$= \inf_{s,t>0} \left\{ s(C - B_{\alpha\alpha}) + t(C - B_{\beta\beta}) + \log E_{Q}^{\beta} \left( \frac{p_{\alpha}(x)}{q_{\alpha}(x)} \right)^{s} \left( \frac{p_{\alpha}(x)}{q_{\beta}(x)} \right)^{t} \right\}$$

$$\geq \inf_{s>0} \left\{ s(C - B_{\alpha\alpha}) + \log E_{Q}^{\beta} \left( \frac{p_{\alpha}(x)}{q_{\alpha}(x)} \right)^{s} \right\} + \inf_{t>0} \{ t(C - B_{\beta\beta}) \}. \tag{2.9}$$

The second term of (2.9) is zero because  $C - B_{\beta\beta} = \max_{k=\alpha,\beta} (C_{\alpha k} + B_{kk}) - B_{\beta\beta} \ge C_{\alpha\beta} > 0$  when  $P_{\alpha} = Q_{\beta}$ . Let f(s) be the function in the paranthesis of the first term in (2.9). Then  $f'(0) = C - B_{\alpha\alpha} + E_Q^{\beta} \log p_{\alpha}(x)/q_{\alpha}(x) = C - B_{\alpha\alpha} + K(P_{\alpha}, Q_{\alpha}) \ge C_{\alpha\alpha} + K(P_{\alpha}, Q_{\alpha}) \ge 0$ . Since f(s) is a convex function, this implies that  $\inf_{s>0} f(s) = 0$ . That is  $\rho_{\alpha\beta}(B_{\alpha\alpha}, B_{\beta\beta}, C) = 0$ . But, by assumption  $B_{\beta\beta} > 0$ , and inequality  $\rho_{\alpha\beta}(B_{\alpha\alpha}, B_{\beta\beta}, C) \le -B_{\beta\beta}$  is impossible, and hence adaptive test cannot exist. This yields

Corollary 2.4 If  $P_{\alpha} = Q_{\beta}$  for some  $\alpha \neq \beta$ , then an adaptive test does not exist.

Remarks. 1. If  $P_{\alpha} = P$  for some P for all  $\alpha$ , then (2.8) always holds, i.e. an adaptive test always exists.

2. By interchanging the roles of  $P_{\alpha}$ ,  $Q_{\alpha}$ , we can define a similar notion of adaptation, i.e. a test is adaptive if the type II error converges to zero at a guranteed rate while the type I error converges to zero at the optimal rate. Thus a test with the following properties:

$$\limsup_{n\to\infty} n^{-1}\log E_Q^{\alpha}(1-\phi_n) \leq -A_{\alpha}$$
 and

$$\liminf_{n\to\infty} n^{-1}\log E_P^\alpha\phi_n = -B(A_\alpha,Q_\alpha,P_\alpha)$$

exists iff

$$B(A_{\alpha}, Q_{\alpha}, P_{\alpha}) \leq B(A_{\beta}, Q_{\beta}, P_{\alpha}), \text{ for } \alpha, \beta = 1, \dots, l.$$
 (2.10)

It is easy to see that  $\lim_{A_{\beta}\to 0+} B(A_{\beta}, Q_{\beta}, P_{\alpha}) = K(Q_{\beta}, P_{\alpha})$ . Thus, by setting  $A_1 = \cdots = A_l = 0$ , i.e. by letting the type II error converges to a positive constant, condition (2.10) becomes  $K(Q_{\alpha}, P_{\alpha}) \leq K(Q_{\beta}, P_{\alpha})$ . This result is obtained in Rukhin (1986).

3. Corollary 2.3 can be extended to the case when the nuisance parameter has countably many values. Assume that  $\inf_{\beta} K(Q_{\beta}, P_{\alpha}) > 0$  and  $0 < A_{\alpha} < \inf_{\beta} K(Q_{\beta}, P_{\alpha})$  for every  $\alpha$ . Let  $\{k_n\}$  be a non-decreasing sequence such that  $n^{-1} \log k_n \to 0$  as  $n \to \infty$ . Consider the following test:

$$\phi_n^* = \begin{cases} 1 & \text{if } n^{-1} \log \frac{\max_{\beta \le k_n} e^{nB_{\beta\beta}} \prod_{j=1}^n q_{\beta}(x_j)}{\max_{\beta \le k_n} e^{nA_{\beta}} \prod_{j=1}^n p_{\beta}(x_j)} \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

Using corollaries 2.1 and 2.2, it is clear that if an adaptive test exists, then (2.8) holds for all  $\alpha, \beta$ . We claim that  $\phi_n^*$  is an adaptive test if (2.8) holds. We first show that  $\phi_n^*$  is a test of rate  $A_{\alpha}$  for every  $\alpha$ . Pick n large enough so that  $\alpha \leq k_n$ , then

$$E_P^{\alpha}\phi_n^* \leq k_n \cdot \max_{\beta \leq k_n} \inf_{t>0} e^{-nt(A_{\alpha}-B_{\beta\beta})} (\psi(t|P_{\alpha},Q_{\beta}))^n.$$

From the proof of theorem 2.1.  $\inf_{t>0} \{e^{-t(A_{\alpha}-B_{\beta\beta})}\psi(t|P_{\alpha},Q_{\beta})\} \le e^{-A_{\alpha}}$ , for any  $\beta$ . Thus,

$$\limsup_{n\to\infty} n^{-1} \log E_P^{\alpha} \phi_n^* \leq \lim_{n\to\infty} n^{-1} \log k_n - A_{\alpha}$$
$$= -A_{\alpha}.$$

Now, we show that type II error of the test  $\phi_n^*$  converges to zero at the optimal rate. Using the same argument as above

$$\lim_{n\to\infty} \inf n^{-1} \log E_Q^{\alpha}(1-\phi_n^*) \\
\leq \sup_{\beta} \inf_{t>0} \{-t(B_{\alpha\alpha}-A_{\beta}) + \log \psi(t|Q_{\alpha},P_{\beta})\} + \lim_{n\to\infty} n^{-1} \log k_n \\
\leq -B_{\alpha\alpha}.$$

Hence,  $\phi_n^*$  is an adaptive test.

4. When an adaptive test exists, then the test defined in (2.2) is always adaptive. However, an overall maximum likelihood ratio test, i.e. a test with critical region  $\{x : \max_{\alpha} \prod_{j=1}^{n} q_{\alpha}(x_{j}) / \max_{\alpha} \prod_{j=1}^{n} p_{\alpha}(x_{j}) \ge e^{nc_{n}}\}$ , for some constant  $c_{n}$ , is not necessarily adaptive even when an adaptive test exists. Let  $\hat{\phi}_{n}$  denote such a

test. If  $c_n \equiv \max_{k=\alpha,\beta} C_{\alpha\beta}$ , then it can be shown that  $\hat{\phi}_n$  is a test of rate  $A_{\alpha}$  for each  $\alpha$ . If  $A_{\alpha}$ ,  $\alpha = 1, \ldots, l$  are picked such that  $C_{11} = \cdots = C_{ll}$ , then a sufficient condition for the test  $\hat{\phi}_n$  to be adaptive is that  $B_{\alpha\beta} \geq B_{\beta\beta} + t_{\alpha}(C - C_{\alpha\beta})$  where  $C = \max_{\alpha,\beta} C_{\alpha\beta}$ ,  $t_{\alpha} = \max_{\beta} t_{\beta\alpha}$ , and  $t_{\beta\alpha}$  is the point where  $-tC_{\alpha\beta} + \log \psi(t|P_{\alpha},Q_{\beta})$  attains its minimum.

## 3 Example

Let  $P_{\alpha}, Q_{\alpha}$  belong to an exponential family with densities  $p_{\alpha}, q_{\alpha}$  given by

$$p_{\alpha}(x) = \exp\{\xi'_{\alpha}x - \chi(\xi_{\alpha})\},$$

$$q_{\alpha}(x) = \exp\{\eta'_{\alpha}x - \chi(\eta_{\alpha})\}.$$

Let  $g(t,u) = -tu + \log \psi(t|P_{\alpha},Q_{\beta})$ . By a straightforward calculation,

$$\psi(t|P_{\alpha},Q_{\beta}) = \int \exp t\{\eta_{\beta}'x - \xi_{\alpha}'x - \chi(\eta_{\beta}) + \chi(\xi_{\alpha})\} \exp\{\xi_{\alpha}'x - \chi(\xi_{\alpha})\} dx$$
$$= \exp\{-(1-t)\chi(\xi_{\alpha}) - t\chi(\eta_{\beta}) + \chi(t\eta_{\beta} + (1-t)\xi_{\alpha})\}.$$

Thus,  $g(t,u) = -tu - (1-t)\chi(\xi_{\alpha}) - t\chi(\eta_{\beta}) + \chi(t\eta_{\beta} + (1-t)\xi_{\alpha})$ . Therefore we have

$$g'(t) = -u + \chi(\xi_{\alpha}) - \chi(\eta_{\beta}) + \chi'(t\eta_{\beta} + (1-t)\xi_{\alpha}),$$

where  $g', \chi'$  are derivitives of  $g, \chi$  with respect to t.

If  $s_{\alpha\beta}$  satisfies

$$s_{\alpha\beta}\chi'(s_{\alpha\beta}\eta_{\beta} + (1 - s_{\alpha\beta})\xi_{\alpha}) - \chi(s_{\alpha\beta}\eta_{\beta} + (1 - s_{\alpha\beta})\xi_{\alpha}) + \chi(\xi_{\alpha}) = A_{\alpha}, \quad (3.1)$$

and let

$$C_{\alpha\beta}(A_{\alpha}) = \chi(\eta_{\beta}) - \chi(\xi_{\alpha}) - \chi'(s_{\alpha\beta}\eta_{\beta} + (1 - s_{\alpha\beta})\xi_{\alpha}), \tag{3.2}$$

then  $g(s_{\alpha\beta}, C_{\alpha\beta}) = -A_{\alpha}$  and  $g'(s_{\alpha\beta}, C_{\alpha\beta}) = 0$ .

Suppose  $0 < A_{\alpha} < \min_{\beta} K(Q_{\beta}, P_{\alpha})$ , for each  $\alpha$ , then an adaptive test exists iff

$$A_{\alpha} - \chi(\eta_{\beta}) + \chi(\xi_{\alpha}) + \chi'(s_{\alpha\beta}\eta_{\beta} + (1 - s_{\alpha\beta})\xi_{\alpha})$$
  
 
$$\geq A_{\beta} - \chi(\eta_{\beta}) + \chi(\xi_{\beta}) + \chi'(s_{\beta}\eta_{\beta} + (1 - s_{\beta})\xi_{\beta})$$

or,

$$\chi(\xi_{\alpha}) - \chi(\xi_{\beta}) + \chi'(s_{\alpha\beta}\eta_{\beta} + (1 - s_{\alpha\beta})\xi_{\alpha}) - \chi'(s_{\beta}\eta_{\beta} + (1 - s_{\beta})\xi_{\beta}) \ge A_{\beta} - A_{\alpha}. \quad (3.3)$$

Suppose  $P_{\alpha} \sim N(\theta_{\alpha}, 1), Q_{\alpha} \sim N(\mu_{\alpha}, 1)$ , then  $K(Q_{\beta}, P_{\alpha}) = 2^{-1}(\mu_{\beta} - \theta_{\alpha})^2$  and  $\chi(t\eta_{\beta} + (1-t)\xi_{\alpha}) = \frac{1}{2}(t\mu_{\beta} + (1-t)\theta_{\alpha})^2,$ 

$$\chi(t\eta_{\beta}+(1-t)\xi_{\alpha}) = \frac{1}{2}(t\mu_{\beta}+(1-t)\theta_{\alpha})^{2},$$
  
 $\chi'(t\eta_{\beta}+(1-t)\xi_{\alpha}) = (t\mu_{\beta}+(1-t)\theta_{\alpha})(\mu_{\beta}-\theta_{\alpha}).$ 

It is easy to check that  $s_{\alpha\beta} = \sqrt{\frac{2A_{\alpha}}{(\mu_{\beta} - \theta_{\alpha})^2}}$  satisfies (3.1), and it follows from (3.2) that

$$C_{lphaeta}(A_lpha) = rac{(\mu_eta- heta_lpha)^2}{2} \left(rac{2\sqrt{2A_lpha}}{|\mu_eta- heta_lpha|} - 1
ight).$$

Thus, if  $0 < A_{\alpha} < \min_{\beta} 2^{-1} (\mu_{\beta} - \theta_{\alpha})^2$ , then an adaptive test exists iff for all  $\alpha \neq \beta$ 

$$(\mu_{\alpha} - \theta_{\alpha})^{2} \left( \frac{\sqrt{2A_{\alpha}}}{|\mu_{\alpha} - \theta_{\alpha}|} - \frac{1}{2} \right) - (\mu_{\alpha} - \theta_{\beta})^{2} \left( \frac{\sqrt{2A_{\beta}}}{|\mu_{\alpha} - \theta_{\beta}|} - \frac{1}{2} \right) \ge A_{\beta} - A_{\alpha}. \quad (3.4)$$

For example, when  $\theta_1 = -1$ ,  $\mu_1 = 1$ ;  $\theta_2 = -1.5$ ,  $\mu_2 = 0.5$ ,  $A_1 = 0.5$ ,  $A_2 = 1.125$ , then  $C_{11} = 0$ ,  $C_{12} = 0.375$ ,  $C_{21} = 0.625$ ,  $C_{22} = 1$  and the above condition is satisfied. (Here  $B_{11} = B_{21} = 0.5$ ,  $B_{22} = B_{12} = 0.125$ ).

Consider the following overall maximum likelihood ratio test with the above parametric values:

$$\hat{\phi_n}(\mathbf{x}) = \begin{cases} 1 & \text{if } n^{-1}\log\frac{\max_{\alpha=1,2}\prod_{j=1}^n q_\alpha(x_j)}{\max_{\alpha=1,2}\prod_{j=1}^n p_\alpha(x_j)} \ge C \\ 0 & \text{otherwise.} \end{cases}$$

If the critical constant C is chosen such that  $C = \max_{\alpha\beta} C_{\alpha\beta}(A_{\alpha}) = 1$ , then  $\hat{\psi_n}$  is a test of exponential rate  $A_{\alpha}$  for  $\alpha = 1, 2$ . Now, consider the rate of convergence of the probability of type two error:

$$\lim_{n \to \infty} n^{-1} \log E_Q^{\alpha}(1 - \hat{\phi}_n) = \max_{k=1,2} \inf_{s,t>0} \left\{ (s+t) + \log E_Q^{\alpha} \left( \frac{p_k(x)}{q_1(x)} \right)^s \left( \frac{p_k(x)}{q_2(x)} \right)^t \right\}. \tag{3.5}$$

When  $\alpha = 2$ ,

CONTRACTOR OF THE PROPERTY OF

$$E_Q^2 \left(\frac{p_k(x)}{q_1(x)}\right)^s \left(\frac{p_k(x)}{q_2(x)}\right)^t = \exp{-\frac{1}{2}\{s(1-s)(\theta_k-\mu_1)^2+t(1-t)(\theta_k-\mu_2)^2+2t(\theta_k-\mu_1)(\mu_1-\mu_2)-2st(\theta_k-\mu_2)(\theta_k-\mu_1)\}}.$$

Consider k = 1 and let the expression in the parenthesis of (3.5) be g(s, t), i.e.

$$g(s,t) = s + t - \frac{9}{8}t(1-t) - 2s(1-s) + s + 3st.$$

By differentiating g with respect to s and t, one can show that  $(\partial/\partial s)g$  and  $(\partial/\partial t)g$  do not vanish simultaneously and therefore

$$\inf_{s,t>0} g(s,t) = \min\{\inf_{s>0} g(s,0), \inf_{t>0} g(0,t)\}.$$

By a straightforward calculation,  $\inf_{s,t>0} g(s,t) \approx -.0035$ . Hence,

$$\lim_{n\to\infty} n^{-1}\log E_Q^2(1-\hat{\phi_n}) > -.125 = -B_2,$$

and it follows that  $\hat{\phi_n}$  is not an adaptive test.

Note that in this example, the critical constant C=1 is the 'best' in the sense that  $\hat{\phi}_n$  is a test of exponential rate  $A_{\alpha}$  fo reach  $\alpha$ . If C is replaced by  $c_n$  in the definition of  $\hat{\phi}_n$  such that  $\liminf_{n\to\infty} c_n = C' < 1$ , then by a similar calculation as above, one can show that  $\limsup_{n\to\infty} n^{-1} \log E_P^2 \hat{\phi}_n > -A_2$ .

#### References

- [1] Bahadur, R.R. (1960). Stochastic comparison of tests. Ann. Math. Statist., 31, 276-295.
- [2] Bahadur, R.R. (1965). An optimal property of the likelihood ratio statistic. Proc. Fifth Berkely Symp. Math. Statist. Prob., 1, 13-26.
- [3] Bahadur, R.R. (1967). Rates of convergence of estimates and test statistics. Ann. Math. Statist. 38, 303-324.
- [4] Bahadur, R.R. (1971). Some limit theorems in statistics. Regional Conference series in Applied Mathematics 4. SIAM, Philadelphia.
- [5] Brown, L.D. (1971). Non-local asymptotic optimality of appropriate likelihood ratio tests. Ann. Math. Statist., 42, 1206-1240.
- [6] Birgé, L. (1981). Vitesses maximales de d'ecroissance des erreurs et tests optimaux associés. Z. Wahrsch., 55, 261-273.
- [7] Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations. Ann. Math. Statist., 23, 493-507.

- [8] Blahut, R.E. (1974). Hypothesis testing and information theory. IEEE Transactions on Information Theory, 410-417.
- [9] Groeneboom, P., Oosterhoff, J., Ruymgaart, F.H. (1979). Large deviation theorems for empirical probability measures. Ann. of Prob., 7, 553-586.
- [10] Hoeffding, W. (1965). Asymptotically optimal tests for multinomial distributions. Ann. Math. Statist., 36, 369-408.
- [11] Rukhin, A.L. (1982). Adaptive procedures in multiple decision problems and hypothesis testing. Ann. Statist., 10, 1148-1162.
- [12] Rukhin, A.L. (1986). Adaptive tests in statistical problems with finite nuisance parameter. Probab. Th. Rel. Fields, 73, 529-538.
- [13] Tusnády, G. (1977). On asymptotically optimal tests. Ann. Math. Statist., 5, 385-393.

| . REPORT DOCUMENTATION PAGE                                                                                                                                                      |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|----------------------------|-----------------------------------------|
| 1a. REPORT SECURITY CLASSIFICATION                                                                                                                                               |                                                                              |                                      |                                           | 1b. RESTRICTIVE MARKINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |             |                            |                                         |
| Unclassified  Za. SECURITY CLASSIFICATION AUTHORITY                                                                                                                              |                                                                              |                                      |                                           | 3. DISTRIBUTION/AVAILABILITY OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           | Approved for public release, distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |             |                            |                                         |
| 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE                                                                                                                                      |                                                                              |                                      |                                           | unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |             |                            |                                         |
| 4. PERFORMING ORGANIZATION REPORT NUMBER(S)                                                                                                                                      |                                                                              |                                      |                                           | 5. MONITORING ORGANIZATION REPORT NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |             |                            |                                         |
| Technical Report #88-38                                                                                                                                                          |                                                                              |                                      |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |             |                            |                                         |
| 6a. NAME OF                                                                                                                                                                      | PERFORMING                                                                   | ORGANIZATION                         | 6b. OFFICE SYMBOL                         | 7a. NAME OF MONITORING ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |             |                            |                                         |
| Purdue University                                                                                                                                                                |                                                                              |                                      | (If applicable)                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |             |                            |                                         |
| 6c. ADDRESS (City, State, and ZIP Code)                                                                                                                                          |                                                                              |                                      |                                           | 7h ADDRESS (City, Season and 7/0 Condo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |             |                            |                                         |
|                                                                                                                                                                                  | •                                                                            |                                      |                                           | 7b. ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |             |                            |                                         |
| Department of Statistics<br>West Lafayette, IN 47907                                                                                                                             |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| Ro NAME OF                                                                                                                                                                       | SUNDING (SDO                                                                 | MEODING                              | Tab occurs systems                        | O DOCCUPEATENT INCOME IN THE PROPERTY OF THE P |                                                   |             |                            |                                         |
| 8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research  8b. OFFICE SYMBOL (If applicable)                                                                          |                                                                              |                                      |                                           | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-88-K-0170 and NSF Grant DMS-8606964, DMS-8702620A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            | 8c. ADDRESS (City, State, and ZIP Code) |
| Arlington, VA 22217-5000                                                                                                                                                         |                                                                              |                                      |                                           | PROGRAM<br>ELEMENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROJECT<br>NO.                                    | TASK<br>NO. | WORK UNIT<br>ACCESSION NO. |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                          |             |                            |                                         |
| 11. TITLE (Include Security Classification)                                                                                                                                      |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| ADAPTIVE TESTS                                                                                                                                                                   |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| 12. PERSONAL AUTHOR(S)                                                                                                                                                           |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| K. S. Mak                                                                                                                                                                        |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| 13a. TYPE OF<br>Technic                                                                                                                                                          |                                                                              | 13b. TIME C                          | OVERED<br>TO                              | 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |             |                            |                                         |
| 16. SUPPLEMENTARY NOTATION                                                                                                                                                       |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)                                                                               |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             | block number)              |                                         |
| FIELD                                                                                                                                                                            | GROUP                                                                        | SUB-GROUP                            | s; rates of convergence of types I and II |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      | errors; exponential family                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| 19 ABSTRACT                                                                                                                                                                      | 19. ABSTRACT (Continue on reverse if necessary and identify by block number) |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| This paper considers the problem of hypothesis testing when the distribution is specified only up to a nuisance parameter. A test is said to be adaptive if it is asymptotically |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| optimal regardless of the value of the nuisance parameter. The exponential rate of                                                                                               |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| convergence to zero of the type II error when the type I error converges to zero                                                                                                 |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| exponentially fast at a fixed rate is used as the optimal criterion. A necessary and sufficient condition for the existence of adaptive test is obtained.                        |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| ,                                                                                                                                                                                |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
|                                                                                                                                                                                  |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             | Ì                          |                                         |
| 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION                                                                                                   |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| _                                                                                                                                                                                |                                                                              | ILITY OF ABSTRACT  TED [3] SAME AS I | RPT. DTIC USERS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21. ABSTRACT SECURITY CLASSIFICATION Unclassified |             |                            |                                         |
| 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL                                                                                        |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| Shanti S. Gupta (317) 494-6031                                                                                                                                                   |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |
| DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE                                                                            |                                                                              |                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |             |                            |                                         |

All other editions are obsolete.

UNCLASSIFIED